Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alexander Krivokapić,*
 Jonathan A. Faiz and Harry L. Anderson

Dyson Perrins Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QY, England

Correspondence e-mail:
alexander.krivokapic@chem.ox.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.025$
$w R$ factor $=0.031$
Data-to-parameter ratio $=16.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis-BBN (9-borabicyclo[3.3.1]nonane) adduct of bis(diethylglyoximato)nickel(II)

The bis-BBN adduct of bis(diethylglyoximato)nickel(II), [2,9-bis(cyclooctane-1,5-diyl)-4,6,11,13-tetraethyl-1,3,8,10-tetra-oxa-4,7,11,14-tetraaza-2,9-diboracyclotetradecane-4,6,11,13tetraene $\left.-\kappa^{4} \mathrm{~N}\right]$ nickel(II), $\left[\mathrm{Ni}\left(\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{~B}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right]$, crystallizes as a monomer, with no short $\mathrm{Ni} \cdot \cdots \mathrm{Ni}$ contacts. The asymmetric unit contains only half a molecule and the Ni atom lies on an inversion centre.

Comment

In the preceding paper, we reported the structure of a mono-9borabicyclo[3.3.1]nonane (BBN) adduct of bis(diethylglyoxato)nickel(II) (Krivokapic et al., 2003). We report here the structure of the bis-adduct, (I). This compound was prepared in good yield by treating bis(diethylglyoximato)nickel(II) with methoxy-9-BBN in toluene at reflux for 2 d .

(I)

The geometry of (I) (Fig. 1 and Table 1) is similar to those of previously reported complexes of this type (Chakravorty, 1974; Krivokapić et al., 2003). Compound (I) adopts a C_{i} conformation, with approximate $C_{2 h}$ symmetry, with the BBN units shifted towards opposite faces of the macrocycle; this conformation evidently prevents stacking. The geometry of the 9-BBN unit leads to a short H91 . . H132 contact (1.91 \AA).

Experimental

Methoxy-9-BBN ($1.50 \mathrm{ml}, 1.0 \mathrm{M}$ in hexanes; 1.50 mmol) was added to a solution of bis(diethylglyoximato)nickel(II) $(0.10 \mathrm{~g}, 0.29 \mathrm{mmol})$ in toluene $(5 \mathrm{ml})$. After heating to reflux for 2 d , the product was chromatographed $\left(\mathrm{SiO}_{2}\right.$, toluene) to yield (I) $(0.114 \mathrm{~g}, 67 \%)$ as orange crystals. M.p. $532-534 \mathrm{~K} ; \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 2.61(8 \mathrm{H}, q)$, $1.88-1.80(4 \mathrm{H}, m), 1.75-1.60(20 \mathrm{H}, m), 1.50-1.43(4 \mathrm{H}, m), 1.20,(6 \mathrm{H}$, $t) ; \delta_{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 160.4,31.6,24.8,19.7,10.2 ; \mathrm{m} / \mathrm{z}\left(\mathrm{APCI}^{+}\right)$ $585.56[\mathrm{M}+\mathrm{H}]^{+}$. Crystals of (I) were grown from acetone by evaporation.

Received 30 June 2003

Accepted 5 August 2003
Online 15 August 2003
\qquad

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{2} 8 \mathrm{H}_{48} \mathrm{~B}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}\right)\right]$
$M_{r}=585.05$
Monoclinic, $P 2_{1} / c$
$a=7.4047(1) \AA$
$b=19.2467(2) \AA$
$c=10.508(2) \AA$
$\beta=94.7398(5)^{\circ}$
$V=1498.52(4) \AA^{3}$
$Z=2$

Data collection

Enraf-Nonius KappaCCD
diffractometer
ω scans
Absorption correction: multi-scan (DENZO/SCALEPACK;
Otwinowski \& Minor, 1997)
$T_{\text {min }}=0.87, T_{\text {max }}=0.87$
3497 measured reflections

Refinement

Refinement on F
$R=0.025$
$w R=0.031$
$S=1.04$
2934 reflections
178 parameters
H -atom parameters not refined
$D_{x}=1.297 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 3483 reflections
$\theta=5-27^{\circ}$
$\mu=0.69 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Block, orange
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

3386 independent reflections
2934 reflections with $I>3 \sigma(I)$
$R_{\text {int }}=0.03$
$\theta_{\text {max }}=27.4^{\circ}$
$h=0 \rightarrow 9$
$k=0 \rightarrow 24$
$l=-13 \rightarrow 13$

Weighting scheme: Prince-modified Chebychev polynomial with 3 parameters (Watkin, 1994),
$W=[w]\left\{1-[\Delta F / 6 \sigma(F)]^{2}\right\}^{2}$,
$w=2.03,0.0469$ and 1.40
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.28$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{Ni} 1-\mathrm{N} 2$	$1.8576(9)$	$\mathrm{O} 2-\mathrm{N} 2$	$1.3508(12)$
$\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	$1.8576(9)$	$\mathrm{O} 2-\mathrm{B} 1^{\mathrm{i}}$	$1.5367(14)$
$\mathrm{Ni} 1-\mathrm{N} 1$	$1.864(1)$	$\mathrm{N} 1-\mathrm{C} 1$	$1.2984(15)$
$\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$1.864(1)$	$\mathrm{N} 2-\mathrm{C} 2$	$1.2956(15)$
$\mathrm{O} 1-\mathrm{N} 1$	$1.3540(12)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.4740(15)$
$\mathrm{O} 1-\mathrm{B} 1$	$1.5357(14)$		
$\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{O} 1$	$124.50(7)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$112.1(1)$
$\mathrm{Ni} 1-\mathrm{N} 1-\mathrm{C} 1$	$116.26(8)$	$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 2^{\mathrm{i}}$	179.994
$\mathrm{Ni} 1-\mathrm{N} 2-\mathrm{O} 2$	$124.72(7)$	$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 1$	$82.71(4)$
$\mathrm{Ni} 1-\mathrm{N} 2-\mathrm{C} 2$	$116.41(8)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1$	$97.29(4)$
$\mathrm{O} 1-\mathrm{N} 1-\mathrm{C} 1$	$118.99(9)$	$\mathrm{N} 2-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$97.29(4)$
$\mathrm{O} 2-\mathrm{N} 2-\mathrm{C} 2$	$118.76(9)$	$\mathrm{N} 2^{\mathrm{i}}-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	$82.71(4)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{B} 1-\mathrm{O} 1$	$107.68(9)$	$\mathrm{N} 2-\mathrm{O} 2-\mathrm{B} 1^{\mathrm{i}}$	$113.43(8)$
$\mathrm{N} 1-\mathrm{Ni} 1-\mathrm{N} 1^{\mathrm{i}}$	179.994	$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{C} 1$	$112.46(9)$
$\mathrm{N} 1-\mathrm{O} 1-\mathrm{B} 1$	$113.41(8)$		

Symmetry code: (i) $2-x,-y, 2-z$.
H atoms were located in a difference Fourier map and their parameters were not refined.

Data collection: COLLECT (Nonius, 1997-2001); cell refinement: DENZO/SCALEPACK (Otwinowski \& Minor, 1997); data reduc-

Figure 1
Plot showing the atomic numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level for non-H atoms. Only the contents of the asymmetric unit are labelled. The Ni atom lies on an inversion centre.
tion: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

We thank Andrew R. Cowley and D. J. Watkin (Oxford) for helpful discussion.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Chakravorty, A. (1974). Coord. Chem. Rev. 13, 1-46.
Krivokapić, A., Faiz, J. A. \& Anderson, H. L. (2003). Acta Cryst. E59, m745m747.
Nonius (1997-2001). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Watkin, D. J. (1994). Acta Cryst. A50, 411-437.
Watkin, D. J., Prout, C. K., Carruthers, J. R., Betteridge, P. W. \& Cooper R. I. (2001). CRYSTALS. Issue 11. Chemical Crystallography Laboratory, Oxford, England.
Watkin, D. J., Prout, C. K. \& Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.

